Energy stable numerical methods for hyperbolic partial differential equations using overlapping domain decomposition

نویسندگان

  • Adam Reichert
  • Michael T. Heath
  • Daniel J. Bodony
چکیده

Article history: Received 15 April 2011 Received in revised form 16 February 2012 Accepted 13 March 2012 Available online 3 April 2012

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...

متن کامل

Second-Order Domain Decomposition Method for Three-Dimensional Hyperbolic Problems

In this paper, a non-overlapping second-order domain decomposition method for solving three-dimensional hyperbolic partial differential equation is proposed. Unconditional stability of the algorithm is analyzed. Numerical experiments show that the method is stable and very efficient. Mathematics Subject Classification: 65M06, 65M55

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

A Characteristic Nonoverlapping Domain Decomposition Method for Multidimensional Convection-Diffusion Equations

We develop a quasi-two-level, coarse-mesh-free characteristic nonoverlapping domain decomposition method for unsteady-state convection-diffusion partial differential equations in multidimensional spaces. The development of the domain decomposition method is carried out by utilizing an additive Schwarz domain decomposition preconditioner, by using an Eulerian-Lagrangian method for convection-dif...

متن کامل

Schwarz Waveform Relaxation Methods for Systems of Semi-Linear Reaction-Diffusion Equations

Schwarz waveform relaxation methods have been studied for a wide range of scalar linear partial differential equations (PDEs) of parabolic and hyperbolic type. They are based on a space-time decomposition of the computational domain and the subdomain iteration uses an overlapping decomposition in space. There are only few convergence studies for non-linear PDEs. We analyze in this paper the con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012